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Abstract-Heat/mass transfer and the dynamics of bubbles in a high-polymer solution exposed to ultrasonic 
agitation are investigated. An exact solution of the problem is found on the basis of which main features 
of the oscillations of bubbles are analysed with account taken of the relaxational properties of the carrying 

phase. 

INTRODUCTION 

IN THE first part of this work [l], the analysis of free 
oscillations of bubbles in polymer solutions due, in 
particular, to a pulsed pressure change in the sur- 
rounding medium was conducted. In what follows, 
oscillations and heat/mass transfer of bubbles in a 
sound field are studied within the scope of a similar 
approach. The solution of the problem stated is 
obtained with the use of a system of transfer equations 
and boundary conditions formulated in Part I. The 
equations and symbols listed in ref. [l] are not given 

here. 

GENERAL SOLUTION 

Consider the interaction of a longitudinal wave in 
a hereditary polymer medium with a single bubble 
containing a mixture of an inert gas and the liquid 
phase vapour. The long wave approximation typical 
of the acoustics of two-phase media [2] will be 
employed which assumes the fulfilment of the con- 
dition I> >> R,. This condition imposes the limitation 
on the sound wave frequency f K c,R; ‘, which, at 
c2 - lo3 m s- ‘, yields the estimate for the limiting 

Let {pz, @} exp (iwr) denote dimensionless per- 

turbations of pressure and temperature in a falling 
wave on the bubble surface (here and hereafter the 

same characteristic quantities for non-dimen- 
sionalization are employed as those in ref. [l]). To 

determine the spherical scattered wave, we construct 
the solution of a linearized system of transfer equa- 
tions in a hereditary medium (equations (l), (2), (6)- 
(8) from ref. [l]). The dimensionless perturbations 
of velocity, pressure, density and temperature in the 
scattered wave are sought respectively in the form {c2, 

d2, p”*, a,} exp(iwt). After the determination of the 
unknown amplitude functions, the velocity, tem- 
perature and pressure fields in the vicinity of the oscil- 
lating interphase boundary are determined by super- 
imposing the characteristics of the incident and 

scattered waves. This yields 

frequency fm,, - lo5 Hz for R, - lo-* m. The 
approximation of pressure homogeneity in the bubble 

Here m I,* are dispersion equation roots differing in 

(1, B R,), which is assumed in what follows, is 
modulus : 

stronger, since the speed of sound in the vapour-gas am’--b&-c = 0 

phase is much smaller than that in the liquid. When 

Cl - lo2 m s-‘, fm,, - lo4 Hz for R, - 10m2 m. Since 
a = Gf, b=~2-(iwG~2Pe,)/c&-iwG~G~Pe2T;‘, 

with a decrease in R, the value off&, increases, the c = iw3 Pe2 G:T,‘, G: = c”Tp,‘, 

given approximation is admissible over a wide range 
of frequencies of the sound field and sizes of bubbles 

G: = Kf+G”;p,1, G: = a*K,*f~:T,p,‘, 

PI. G: = 1 -G:(pzOczv)-‘, 
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NOMENCLATURE 

c 

rm 
speed of sound T dimensionless time, tit,, 
imaginary part (0 dimensionless frequency of acoustic 

.i complex dimensionless amplitude of pressure, (3t,. 
phase changes 

k length of sonic wave (k = I, 2) 

111” mass of surfactant Subscripts 
P complex dimensionless amplitude 1 vapour--gas mixture 

of pressure in a bubble 2 liquid 

Pa pressure amplitude in a falling wave r value of parameter in resonance. 

Re real part. 

Greek symbols Superscript 

0, amplitude of temperature change in a * dimensionless value ; complex dynamic 

falling wave modulus. 

G: = iwr?:+GT+4/3(GT+iw?:), 
3 

1’ 1.2 = mi.2 -(o*GT- ‘, v3,z, = 1 +im,,,, 

v5 = iG;(oGT)-- ‘t (2) 

The dimensional complex dynamic moduli of the 
hereditary liquid (?T (i = 1, 2, 3, 4) and also the 

dynamic coefficients of viscosity ij:(k = 1, 2) that 

characterize the rheological properties of the medium 
in the case of periodic deformation with frequency ci, 

are defined by the relations 

Equation (2) determines the complex wave numbers 

of the coupled sonic (m,) and thermal (m2) per- 
turbations. The expressions for m, at G$ = I in the 
approximation of weak absorption of a sound wave 

have the form 

in, = wK~~“‘[l-l/2K~~‘(4/3G’,+G’,)] 

- 1/2idK,* “*[4/3($, +qg)+q> 

K$ = TzK$, G,., = Re {Gtz), v’,.~ = Re (&I. 
(3) 

According to experimental data, within the range 
of frequencies f << 1 MHz for polymer solutions of 
moderate concentrations, the dispersion of sound (the 
possibility of which is indicated by relation (2)) is 
usually small [4] which is due to the smallness of 
the moduli G’,,z. When u’,,~ = G’,,, = 0, equations (3) 
characterize the speed and decay of the sonic wave in 
a viscous fluid with account taken of the volumetric 
viscosity rlV and heat absorption. In the case of a 
viscous fluid, the expression for m, takes the form 

mf = -iw Pe,l-, ‘. Calculations by equation (2) 

show that in a relaxing medium, just as in a viscous 
fluid, the thermal mode decays rapidly. It will be 
assumed in what follows that the source of thermal 

perturbations is absent or is located rather far from 
the inclusion and therefore the discussion will be 

restricted to the study of the interaction of the bubble 
only with the sonic mode. Then, the amplitudes of 
temperature and pressure perturbations in the falling 

wave turn out to be connected by the relation 

0:= -iwv,v,[4/3(G~+ioqs*)m~-w2] ‘p,T. 

It should be noted that for a spherical wave scat- 
tered by the bubble the conservation of the thermal 
mode in the solution is fundamental in view of the 

necessity to fulfil the boundary conditions. 
The radius of the bubble oscillating in a sound field 

is sought in the form of the real part of the expression 
R* = 1 +6exp (ion), (61 cc 1. The solution of the 

linearized system of equations of transfer in the vap- 
our-gas phase and the determination of the inte- 

gration constants from boundary conditions is carried 
out similarly to the case of natural oscillations. This 
yields the expressions for the amplitudes of oscil- 
lations of bubble radius, pressure P in the mixture 

and intensity of phase transitions j : 

6 = (0, Y,-D,Y,)A;‘, P = (D,Y, -D,Y,)A, ‘. 

i = v,(aeQdpfo) ’ JQ~P+P:~QJ~K(@ 

-P:;‘(a,+v,Q,)P)+v,w6]}. 

A, = D,D,-D,D,. (4) 

Here X,+X,, PI-Q5 and ‘P are determined from 
relations given in ref. [I]. The expressions for a,. a9 
and Q6-Q, , are derived from similar formulae of ref. 
[l] after the substitution h -+ iw. The combinations of 
the parameters v,(k = 6.7, . . 10) coincide with n, 
with the only difference being that now rn,,* values are 
determined according to equation (2). The remaining 
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dimensionless quantities are given below : 

D, = ~:-3~(~[l+r,(~14--)]+v~‘Y(~[4-Q,lo), 

D2 =~:~(3T,p:-iov,‘Q,Y), 

D, = l+(vspro)-‘w(m,-m,)(cr,+vsQs)Qs, 

D4 = 2c~*+iwQ~{iw(Q,-Q,) 

+4(iw)-‘(G:+iwW,Q,-v,Q,))> 

8: = icoPe,, /I: = iw Pe,, 

Y, =pTo~;‘\fl(l+Q,,)@, 

Y, = wvi’(m,--m,)Q,flz+p$ 

In the case of an incompressible liquid phase 

(v, = vsv, = m, = 0, v5 = co) at G: = 1, solution (4) 

is greatly simplified to 

6 =p,*(D,-DJD,)-‘, P=p:-D,6, 

j = v,D;‘(~~~‘v,~P-v~B,*, Dz = 3p:&T1, 

D, =j?;-3cr,[l+I-,(cr,-l)]+v,,(v,v,-1))”I’, 

D4 = 2a*+d-4(GT+iwr]~), mz = -ibz. 

(5) 

From equation (5) it follows that a vapour-gas 
bubble in an incompressible fluid can be considered 
as an oscillator with effective dissipation coefficient v 

and elastic constant j : 

v = 2rj$+2w~‘Im{G:}+(2e~-‘Im{D,/D,}, 

~=4Re{G:}+Re{D,/D,}-2a*. (6) 

For gas bubbles (k, = 0, K = 0) oscillating in an 
incompressible viscous fluid (CT = 0) relations (6) 
coincide with the results of ref. [5]. Solution (4) for a 
viscous fluid coincides with the corresponding relation 
in ref. [6], accurate to characteristic time scale. 

NUMERICAL RESULTS AND DISCUSSION 

Calculations of the oscillations of bubbles in a 
relaxing fluid exposed to a sound field were carried 
out on an example of polystyrene solution in toluene. 
The parameters of the system, the technique of cal- 

culation and the results are presented in the same way 
as in ref. [ 11. The data given in Figs. l-5 were obtained 
from formulae (5). For the plots of Figs. 1 and 2 the 
frequency of the sound field was f = 18 kHz. The 
influence of the fluid compressibility was investigated 
on the basis of general solution (4). This influence is 
discussed separately. 

The amplitude of gas bubble pulsations is char- 
acterized by the plots of Fig. 1. They show that the 

inclusion of viscoelasticity effects leads to fundamen- 
tal changes in the pattern of oscillations of inclusions 
in a sound field. 

Calculation based on the rheological model of a 
Newtonian fluid yields strongly damped oscillations 
due to the high viscosity of the system, and the res- 
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FIG. 1. Effect of the relaxation spectrum on the relative 
amplitude of gas bubbles. T, = 293 K. 14, z, = 2, n, = I, 
50, 200, n:; 5, 6, n, = nr, z, = 2.3, 3 ; 7, a Newtonian fluid 

with qD = qs = 0.5 Pa s. 

onance is virtually absent. However, the account for 
even one relaxation time sharply varies the character 

of oscillations (curve 1). When n, increases. the res- 

onance amplitude decreases and when n, = n: the 
limiting curve is attained. The value of n: decreases 
with decreasing frequency f and an increasing spec- 
tral distribution parameter zI The effect of the latter 
is essential only in the zone of resonance and is more 
pronounced for the frequencies f < fr or for inclusions 

with R, < R,. When the viscoelastic properties of the 
fluid are taken into account, the phase of oscillations 
increases in the pre-resonance zone and decreases for 

f>fr. 
The results of calculations of the dynamics and heat 

and mass transfer of bubbles in a polymer solution at 
high temperatures are characterized by the plots of 

Figs. 2-5. When the system is heated, the con- 
centration of vapour in bubbles grows and the res- 

R,x lO*m 

FIG. 2. The relative amplitude of oscillations of vapour- 
gas and vapour bubbles in a viscoelastic polymer solution. 
T,, = 383.7 K. a = I ; l”, 2”, 6”, IT; I’, 6’, ICC; I, I’, I” and 
2, 2”. a Newtonian fluid with qr, = qs = 5 x 10m4 and 0.117 
Pas, respectively; 1, I’, 2-6,6’, 7, IC = co ; I”, 2”, 6”. K = 0.02 ; 
336, 6’, 6, z, = 2; 7, z, = 2.5; 3-5, n, = 10, 50, 100; 6, 6’, 

6”,7,n,=n~.a=0.9;8,IT:ti=~:z,=2,n,=n:. 
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f, (Hz) 

FIG. 3. Characteristics of vapour-gas bubbles pulsating in a 
viscoelastic fluid. T,, = 383.7 K : K = ix~ : IT. I- 3. R,, = 10m4 

m; 1’4. R, = lo-’ m; 1, 1’. qp = ns = 5 x 10m4 Pa s; 2, 2’, 
np = ns = 0.117 Pa s; 3, 3’, :, = 2; n, = n?; 4, 4, z, = 2.5: 

n, = n:. 

0.6 

4 0.4 B 

2 0.2 

0 0 
10 lo* lo3 lo4 

f (Hz) 

FIG. 4. Effect of activity coefficient magnitude. T, = 383.7 
K;IT:h-= cc.R,= 10-4m; l,I’,I”,a=0.9S;2,3,a=O.Y. 
0.85; I”, 2, 3, -I, = 2, n, = n:; 1. I’, nD = ‘Is = 0.5x 10-3, 

0.117 Pa s. 

2.7 

0.6 1.8 

V 

0.3 0.9 

0 0 
10 to* lo3 lo4 

f (Hz) 
FIG. 5. Rheological and thermal coefficients of dissipation. 
T,= 383.7K;IT. l-3,& = 10-4m: 1’4’. R,,= 10-5m: 1. 
l’, Y, ; 2, 2, Y, ; 4’, v ; 3, 3’, viscous dissipation coefficient for 
a Newtonian fluid at nn = ns = 0.117 Pa s; 1, l’, 2, 2’, 4’, 
z, = 2, n, = nr; for all the curves, except 4, K = cc; 4’. 

li = 0.02. 

onance curve shifts to the zone of small inclusions. As 
is seen from Fig. 2, for 7’” = Tb the effect of the fluid 
viscoelasticity, which leads to an increase in the res- 
onance amplitude and also in the intensity of phase 
transitions, is especially high in the case of quasi- 
equilibrium character of the processes of evaporation 
and condensation. The increase in the number of 
relaxation times in the spectrum. taken into account 
in calculations, leads to a decrease in the value of 1 jl 
and in the resonance amplitude (curves 336). The 
growth of the spectral distribution parameter I, exerts 

the opposite effect (curves 6 and 7). 
It follows from Fig. 3(a) that for T,, = r,, in the 

region of low frequencies of the sound field with ,f- 
0 the pulsation amplitude of a bubble with R,, = 
10m4 m increases quickly (linear solution of equa- 
tion (4) becomes incorrect in this case), whereas for 
an inclusion with R. = 1 O- ’ m the amplitude remains 

limited. This difference is attributable to different vap- 
our concentrations in bubbles. In fact, when w + 0 
there exists [6] a critical concentration of vapour k, 
(defined by the same expression as in the case of free 
oscillations [I]), at which hm,,,,,, S = x. This result is 
explained physically by the vanishing of the effective 
elasticity of the bubble [j in the low-frequency region 
at k,, = k, when an insufficient self-elasticity of the 

vapour-gas mixture is ‘quenched’ by the negative con- 
tribution of capillary pressure. For k, > k, with (II-+ 

0 we have j < 0, which corresponds to an unstable 
oscillating system. As applied to the solution con- 
sidered with R, = 10 and 100 pm, k* = 0.985 and 

0.998, respectively, whereas the equilibrium vapour 
concentration in these bubbles at T, = ?f, constitutes 
k, = 0.957 and 0.995. It is the closeness of the latter 
value of k,, to k. which explains the growth of the 
oscillation amplitude of the bubble with R,, = 100 pm 

when CO -+ 0. 
The listed values of k* are higher than for water [6], 

which is due to the smallness of the surface tension 
coefficients characteristic for many volatile organic 
fluids, For this reason, it is essential to take into 
account the effect of concentration of polymer in a 
solution on the pressure of saturated vapours, since 
for u < 1 the amplitude r5 turns out to be limited for 
all ,f’ values under the conditions considered and at 
the same temperature (Fig. 4). 

The dissipation coefficient v for bubbles in a 

polymer solution decreases with decreasing frequency 
(curves 3’ in Fig. 3(b) and 4’ in Fig. 5), approaching 
at large 1’ values the value corresponding to a pure 
solvent. Therefore. the influence of the relaxation 
properties of a solution turns out to be especially 
important for inclusions, the resonance frequencies of 
which are high. It follows from equation (6) that the 
parameter v can be represented as a sum of 
the rheological, Y,, and thermal, v~, coefficients of 
dissipation : 

I?, = 2~:+201~Irn {G:}, v, = (2w))‘Im{DJD,~. 

(7) 
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The behaviour of each of them is characterized by 
the plots of Fig. 5. It is seen that the frequency 
increases, both the thermal and rheological losses 
decrease simultaneously. Comparison of curves 1, 1’ 
and 2, 2’ shows that with a decrease in R, the role of 
rheological dissipation increases, while that of thermal 
dissipation decreases. It should be noted that with the 
non-equilibrium phase transition the thermal dissi- 
pation is much higher than in the case of quasi- 
equilibrium bubbles, due to which the effect of the 
viscoelasticity of fluid for quasi-equilibrium inclusions 
is much more pronounced than for non-equilibrium 
bubbles. 

In order to investigate the role of compressibility of 
the hereditary medium, a number of calculations were 
performed on the basis of full solution (4). The results 
indicated that the influence of acoustic losses, which 
lead to a smaller resonance amplitude of inclusions, 
is predominantly manifested for gas bubbles with 
R, > 10m3 m and can approximately be taken into 
account by the acoustic dissipation coefficient 
v, = ~*/(2cf), c$ = c&,,. In this case the role of the 
bubble fluid viscoelasticity effects is negligibly small 
for both vapour-gas and gas inclusions. This 
coincides with the conclusion made in ref. [7] within 
the scope of a simpler rheological model. 

SURFACE EFFECTS 

Analysis of the surface activity effects in interphase 
interaction dynamics is of great interest, since many 
polymers in solutions, just like low-molecular sur- 
factants, can greatly alter the surface tension. The role 
of non-solvable surfactant film in oscillations of a 
gas bubble was studied in ref. [8]. Using a similar 
approach, it is also possible to estimate, in the first 
approximation, the influence of capillary effects on 
oscillations of vapour-gas inclusions in the systems 
considered. 

Let the surface concentration of the surfactant be 
r = m,/4nR2 with r~ = a(r) (it is assumed that 
m, = const.). Suppose that the uniform distribution 
of the surfactant over the bubble surface is preserved 
in the presence of radial oscillations. Then, for the 
case of small oscillations 

~=a&-E,(R,$R-*-I)], c,=gI-&IT,, 

o. = o(r,), To = m,/4nR& 

9 = - (aojar),=,o > 0. (8) 
According to equation (8), the quantity CT enters the 

dynamic boundary condition on the bubble surface 
[I]. As a result, in solution (4) the quantity c* in 

D, is replaced by o$(l -2~,,). In the remaining 
expressions g* should also be understood as oz. 

Analysis of the relations obtained in this way with 
regard to the considered polymer solution in toluene 
showed that the presence of the surfactant leads to 
the damping of oscillations of small vapour-gas 

inclusions of pre-resonance size with k, < k. (note 
that a decrease in the static coefficient of surface ten- 
sion in the solution is responsible for the growth of 
k.). The effect is associated with an increase in the 
bubble elasticity coefficient fi which, in the presence 
of a surfactant, is equal to 

It is of interest to note that for purely vapour micro- 
inclusions the effect of the surfactant reverses, since 
the increase in the magnitude of fi is accompanied in 
this case by a decrease in IpI. It should be borne in 
mind, however, that free oscillations of bubbles, which 
are characterized by negative effective elasticity, are 
unstable in amplitude [ 1, 91. 

CONCLUSIONS 

The effect of the relaxational properties of a poly- 
mer fluid leads to a substantial decrease in rheological 
dissipation losses in the course of the oscillations of 
inclusions in a sound field, thus leading to a sharp 
increase in the resonance amplitude of oscillations of 
constant mass bubbles as against a similar viscous 
fluid. This result explains, in particular, the exper- 
imentally observable fact [lo] of the development of 
acoustic cavitation and oscillations of bubbles in a 
polymer melt with a very high Newtonian viscosity 

VP N lo5 Pa s. In the case of vapour-gas bubbles, the 
relaxation effects are responsible for the growth of 
the oscillation amplitude near the resonance, which is 
especially important for quasi-equilibrium inclusions. 
In the case of non-equilibrium character of the evap- 
oration<ondensation processes, the influence of the 
viscoelasticity effects decreases. 

The fall of the solvent vapour pressure over the 
solution leads to a decrease in the oscillation ampli- 
tude of inclusions at a fixed temperature T, - T,. This 

factor is especially important in the low-frequency 
zone where there is a critical concentration of vapour 
in bubbles which leads to a drastic increase in the 
amplitude of oscillations with .f- 0. 
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TRANSFERT THERMIQUE/MASSIQUE ET DYNAMIQUE DES BULLES DANS DES 
SOLUTIONS DE HAUTS POLYMERES-II. OSCILLATIONS DANS UN CHAMP 

SONORE 

RCumLOn ttudie le transfert de chaleurimasse et la dynamique des bulles dans une solution de haut 
polymere exposie a l’agitation ultrasonique. Une solution exacte du probleme est trouvte et les con- 
figurations principales des oscillations des bulles sont analysees en tenant compte des proprietes relax- 

ationnelles de la phase vectrice. 

WARME- UND STOFFUBERTRAGUNG UND BLASENDYNAMIK IN 
HOCHPOLYMEREN LOSUNGEN-II. OSZILLATIONEN IN EINEM SCHALLFELD 

Zusammenfawmg-Wiirme- und Stoffiibertragung sowie die Blasendynamik in einer hochpolymeren 
Losung, die einer Ultraschallerregung ausgesetzt ist, werden untersucht. Eine exdkte Losung des Problems 
wird ermittelt, in dem die Hauptmerkmale der Blasenschwingungen unter Beriicksichtigung der Relax- 

ationseigenschaften der Tragerphase signalisiert werden. 

TEI-IJIOMACCOOEiMEH I4 AMHAMHKA HY3bIPbKOB B PACTBOPAX 
BbICOKOITOJII4MEPOB-II. I-IYJIbCAHHH B 3BYKOBOM I-IOJIE 

AlolOTaqIW-kiCCJIeflyeTC5I rennoMaccoo6MeH B J@iHaMHKa tly3bIpbKOB B paCrBOpe BbrCOKOnOBHMepa 
npB yJrbTpa3ByKOBOM BO3AeficrBBH. HafineBo roBHoe pememie 3aaaBri, Ha ocriOBe KOTO~O~O B 
~B~OKOM TeMnepaTypHOM ruiana30Be npoaBanu3BpoBaBbr 0CHOBHL.E OCO6eHHOCTH nynbcaullfi ny3bIpb- 

KOB C yBeTOM peBaKCalulOHHbIX CBOiiCTB IleCymefi +a3br. 


